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Introduction

- Financial Derivatives are a critical
component of modern commerce

- Computationally-intensive pricing models
are used to value derivative products

- The Financial Industry is a major consumer
of high-end computing



Use Case

- Large Institution

- Many Users

- Many Computational Tasks (with
dependencies)

- Heterogeneous Computing Resources



Our Work

- Domain Specific Approach

- Three Challenges:

1) Implementation — Efficient, Automated across
range of platforms

2) Coping with Dependencies — Removal of
redundant computations

3) Partitioning — Domain Knowledge-guided
Partitioning



Computational Finance

- Application Background:

- Forward Looking Derivatives
- Derivative Valuation
- Monte Carlo Algorithm

- Computational Domain:

- Fundamental Concepts
- Domain Relationships



Forward Looking Derivatives

» An option contract grants the right to buy or sell a
defined asset at a defined point 1n the future, for a
defined price

» A forward-looking option is one with a single
defined point at which 1t may be exercised




How to value a Derivative
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Monte Carlo Algorithm

» A popular met

« Use amodel of

nod — flexible, robust

the asset to simulate the

underlying asset through 1ts life-time:
dS=pdt+aSdw,

» Average the payoff ovelr many_sample paths:
V = max(e " Nzk , Skr— K, 0)



Computational Finance
Domain Concepts
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Computational Finance
Domain Concepts

Relative Time (AT)

Price(S,),
Current Time(t)



Domain Dependencies - “Fusion”
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Domain Dependencies - “Fission”
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Forward Financial Framework (F?3)

- Application Framework vs (Domain
Specific Language)

- Supports range of option types, underlying
models and Monte Carlo Pricing

- Multicore CPUs, GPUs (via OpenCL) and
Maxeler FPGA

- Open Source




F° Fundamentals




F° Fundamentals (I1)

#Declaring the Underlyings

Heston_II Heston_Underlying (0.05,100,0.09,1,—-0.3,2,0.09)
Heston_IV Heston_Underlying (0,100,0.09,1,—-0.3,1,0.09)

#Declaring the Options

Option_1 = European_Option (Heston_II,True, Current_Price ,5)

Option_2 = Barrier_Option (Heston_II ,True,Current_Price ,5,4096,True,120)
Option_3 = Barrier_Option (Heston_IV , True,Current_Price ,5,4096,True,120)



F- Implementation Flow

Domain-Orienteted Description
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F-° Implementation Flow (I1)

#Creating the platforms and solver objects
multicore cpu = Multicore  CPU ()
maxeler fpga = Maxeler FPGA ()

mc_solver cpu = Monte_Carlo(derivative—.[Option_l ,Option 2] ,10e7,
multicore cpu)

mc_solver fpga = MonteCarlo(derivative=[Option 3],10e7,
maxeler fpga)

#Calling the CPU solver to generate,

mc_solver cpu.generate ()
mc_solver cpu.compile ()

results = mc_ solver cpu.execute ()

compile and exzecute



F” incorporates Domain Knowledge

- Structure — The framework's objects mirrors
the domain concepts

- General Optimisation — The “fusion” rule is
used to avoid redundant computations

- Partitioning — The *fission” rule allows for
flexibility during partitioning



Experimentation

» 3 Claims:
1) Efficient, Automated Implementations
2) Removal of Redundant Computation

3) Domain Knowledge can guide partitioning



15t Claim — Efficient, Automated
Implementations

- Compare against external implementations:

- Kaiserslautern Barrier Option Pricing Benchmark
- Imperial College Asian Option Pricing

-+ 10 Million Simulations, 4096 Points per Sim

- Multicore CPU (8 core Intel Core i7), GPU*
(AMD FirePro W5000) and FPGA (Maxeler
Max3 — Virtex 6)

- Latency and Energy



Implementation
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2" and 3" Claims — Exploiting

Domain Knowledge
- Construct Portfolio out of Kaiserslatuarn

Benchmark + Imperial Asian Option

- Multicore CPU and FPGA, independently and
together

- Latency



Domain Rule Optimisations
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Conclusion

- Our approach to Computational Finance as a
Problem Domain

- Contributions:

1) Efficient, Automated Implementations
2) Removal of Redundant Computations
3) Domain-Knowledge Guided Partitioning

- Is Domain Specificity worth it?



Future Work

» More Heterogeneity!

- Runtime Characterisation and Modelling

- End-User Exploration of the Design Space
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Removing Redundant Computations
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Future Work
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